312 research outputs found

    Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    Get PDF
    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ~ 0.”3 to r ~ 1'' (34–114 au). The disk is oriented in a near east–west direction (PA ~ 75°), is inclined by i ~ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk's eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ~ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga's star formation history. SCExAO's planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk's visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions

    The young binary HD 102077: Orbit, spectral type, kinematics, and moving group membership

    Full text link
    The K-type binary star HD 102077 was proposed as a candidate member of the TW Hydrae Association (TWA) which is a young (5-15 Myr) moving group in close proximity (~50 pc) to the solar system. The aim of this work is to verify this hypothesis by different means. We first combine diffraction-limited observations from the ESO NTT 3.5m telescope in SDSS-i' and -z' passbands and ESO 3.6m telescope in H-band with literature data to obtain a new, amended orbit fit, estimate the spectral types of both components, and reanalyse the Hipparcos parallax and proper motion taking the orbital motion into account. Moreover, we use two high-resolution spectra of HD 102077 obtained with the fibre-fed optical echelle spectrograph FEROS at the MPG/ESO 2.2m telescope to determine the radial velocity and the lithium equivalent width of the system. The trajectory of HD 102077 is well constrained and we derive a total system mass of 2.6±0.82.6 \pm 0.8\, M_{\odot} and a semi-major axis of 14.9±1.614.9 \pm 1.6\,AU. From the i'-z' colours we infer an integrated spectral type of K2V, and individual spectral types of K0 +/- 1 and K5 +/- 1. The radial velocity corrected for the orbital motion of the system is 17.6±217.6 \pm 2\,km/s. Even though the parallax determination from the Hipparcos data is not influenced by the orbital motion, the proper motion changes to μαcos(δ)=137.84±1.26\mu_\alpha*\cos(\delta) = -137.84 \pm 1.26\, mas/yr and μδ=33.53±1.45\mu_\delta = -33.53 \pm 1.45 \,mas/yr. With the resultant space motion, the probability of HD 102077 being a member of TWA is less than 1%. Furthermore, the lithium equivalent width of 200±4200 \pm 4\,m\AA \, is consistent with an age between 30 Myr and 120 Myr and thus older than the predicted age of TWA. In conclusion, HD 102077's age, galactic space motion, and position do not fit TWA or any other young moving group

    Binaries among low-mass stars in nearby young moving groups

    Get PDF
    The solar galactic neighbourhood contains a number of young co-moving associations of stars (so-called `young moving groups') with ages of ~10--150 Myr, which are prime targets for a range of scientific studies, including direct imaging planet searches. The late-type stellar population of such groups still remain in their pre-main sequence phase, and are thus well suited for purposes such as isochronal dating. Close binaries are particularly useful in this regard, since they allow for a model-independent dynamical mass determination. Here we present a dedicated effort to identify new close binaries in nearby young moving groups, through high-resolution imaging with the AstraLux Sur Lucky Imaging camera. We surveyed 181 targets, resulting in the detection of 61 companions or candidates, of which 38 are new discoveries. An interesting example of such a case is 2MASS J00302572-6236015 AB, which is a high-probability member of the Tucana-Horologium moving group, and has an estimated orbital period of less than 10 years. Among the previously known objects is a serendipitous detection of the deuterium burning boundary circumbinary companion 2MASS J01033563-5515561 (AB)b in the z'-band, thereby extending the spectral coverage for this object down to near-visible wavelengths.Comment: 12 pages, 3 figures, accepted for publication in A&

    Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    Get PDF
    We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ~ 0.”3 to r ~ 1'' (34–114 au). The disk is oriented in a near east–west direction (PA ~ 75°), is inclined by i ~ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk's eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ~ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga's star formation history. SCExAO's planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk's visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions

    A substellar companion to Pleiades HII 3441

    Get PDF
    We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.”49 ± 0.”02 (66 ± 2 au) and a mass of 68 ± 5 M_J based on three observations in the J-, H-, and Ks-bands. The spectral type is estimated to be M7 (∼2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0^(+26.1)_(−8.8)% This is consistent with multiplicity studies of both the Pleiades stars and other open clusters
    corecore